Back to Search Start Over

Uniform change point tests in high dimension

Authors :
Jirak, Moritz
Source :
Annals of Statistics 2015, Vol. 43, No. 6, 2451-2483
Publication Year :
2015

Abstract

Consider $d$ dependent change point tests, each based on a CUSUM-statistic. We provide an asymptotic theory that allows us to deal with the maximum over all test statistics as both the sample size $n$ and $d$ tend to infinity. We achieve this either by a consistent bootstrap or an appropriate limit distribution. This allows for the construction of simultaneous confidence bands for dependent change point tests, and explicitly allows us to determine the location of the change both in time and coordinates in high-dimensional time series. If the underlying data has sample size greater or equal $n$ for each test, our conditions explicitly allow for the large $d$ small $n$ situation, that is, where $n/d\to0$. The setup for the high-dimensional time series is based on a general weak dependence concept. The conditions are very flexible and include many popular multivariate linear and nonlinear models from the literature, such as ARMA, GARCH and related models. The construction of the tests is completely nonparametric, difficulties associated with parametric model selection, model fitting and parameter estimation are avoided. Among other things, the limit distribution for $\max_{1\leq h\leq d}\sup_{0\leq t\leq1}\vert \mathcal{W}_{t,h}-t\mathcal{W}_{1,h}\vert$ is established, where $\{\mathcal{W}_{t,h}\}_{1\leq h\leq d}$ denotes a sequence of dependent Brownian motions. As an application, we analyze all S&P 500 companies over a period of one year.<br />Comment: Clarified Assumption 4.3 and Theorems 4.4, 4.6 and 4.8. The results themselves are unchanged

Subjects

Subjects :
Mathematics - Statistics Theory

Details

Database :
arXiv
Journal :
Annals of Statistics 2015, Vol. 43, No. 6, 2451-2483
Publication Type :
Report
Accession number :
edsarx.1511.05333
Document Type :
Working Paper
Full Text :
https://doi.org/10.1214/15-AOS1347