Back to Search
Start Over
Volume-based Semantic Labeling with Signed Distance Functions
- Publication Year :
- 2015
-
Abstract
- Research works on the two topics of Semantic Segmentation and SLAM (Simultaneous Localization and Mapping) have been following separate tracks. Here, we link them quite tightly by delineating a category label fusion technique that allows for embedding semantic information into the dense map created by a volume-based SLAM algorithm such as KinectFusion. Accordingly, our approach is the first to provide a semantically labeled dense reconstruction of the environment from a stream of RGB-D images. We validate our proposal using a publicly available semantically annotated RGB-D dataset and a) employing ground truth labels, b) corrupting such annotations with synthetic noise, c) deploying a state of the art semantic segmentation algorithm based on Convolutional Neural Networks.<br />Comment: Submitted to PSIVT2015
- Subjects :
- Computer Science - Computer Vision and Pattern Recognition
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1511.04242
- Document Type :
- Working Paper