Back to Search
Start Over
Sofic Mean Length
- Source :
- Adv. Math. 353 (2019), 802--858
- Publication Year :
- 2015
-
Abstract
- Given a length function L on the R-modules of a unital ring R, for each sofic group $\Gamma$ we define a mean length for every locally L-finite $R\Gamma$-module relative to a bigger $R\Gamma$-module. We establish an addition formula for the mean length. We give two applications. The first one shows that for any unital left Noetherian ring R, $R\Gamma$ is stably direct finite. The second one shows that for any $Z\Gamma$-module M, the mean topological dimension of the induced $\Gamma$-action on the Pontryagin dual of M coincides with the von Neumann-L\"{u}ck rank of M.<br />Comment: 54 pages. Minor changes. To appear in Adv. Math
Details
- Database :
- arXiv
- Journal :
- Adv. Math. 353 (2019), 802--858
- Publication Type :
- Report
- Accession number :
- edsarx.1510.07655
- Document Type :
- Working Paper