Back to Search
Start Over
HE 0017+0055 : A probable pulsating CEMP-rs star and long-period binary
- Source :
- A&A 586, A159 (2016)
- Publication Year :
- 2015
-
Abstract
- A radial-velocity monitoring of the Carbon-Enhanced Metal-Poor (CEMP) star HE 0017+0055 over 8 years with the Nordic Optical Telescope and Mercator telescopes reveals variability with a period of 384 d and amplitude of 540$\pm27$ m s$^{-1}$, superimposed on a nearly linear long-term decline of $\sim$1 m s$^{-1}$ day$^{-1}$. High-resolution HERMES/Mercator and Keck/HIRES spectra have been used to derive elemental abundances using 1-D LTE MARCS models. A metallicity of [Fe/H] $\sim -2.4$ is found, along with s-process overabundances on the order of 2 dex (with the exception of [Y/Fe] $\sim+0.5$), and most notably overabundances of r-process elements like Sm, Eu, Dy, and Er in the range 0.9 - 2.0 dex. With [Ba/Fe] $ > 1.9$ dex and [Eu/Fe] = 2.3 dex, HE 0017+0055 is a CEMP-rs star. It appears to be a giant star below the tip of the red giant branch (RGB). The s-process pollution must therefore originate from mass transfer from a companion formerly on the AGB, now a carbon-oxygen white dwarf (WD). If the 384 d velocity variations are attributed to the WD companion, its orbit must be seen almost face-on, with $i \sim 2.3^\circ$, because the mass function is very small: $f(M_1,M_2) = (6.1\pm1.1)\times10^{-6}$ Msun. Alternatively, the WD orbital motion could be responsible for the long-term velocity variations, with a period of several decades. The 384 d variations should then be attributed either to a low-mass inner companion (perhaps a brown dwarf, depending on the orbital inclination), or to stellar pulsations. The latter possibility is made likely by the fact that similar low-amplitude velocity variations, with periods close to 1 yr, have been reported for other CEMP stars in a companion paper (Jorissen et al., 2015). A definite conclusion about the origin of the 384 d velocity variations should however await the detection of synchronous low-amplitude photometric variations.<br />Comment: Accepted in Astronomy & Astrophysics
- Subjects :
- Astrophysics - Solar and Stellar Astrophysics
Subjects
Details
- Database :
- arXiv
- Journal :
- A&A 586, A159 (2016)
- Publication Type :
- Report
- Accession number :
- edsarx.1510.06045
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1051/0004-6361/201526993