Back to Search
Start Over
Inserting Multiple Edges into a Planar Graph
- Publication Year :
- 2015
-
Abstract
- Let $G$ be a connected planar (but not yet embedded) graph and $F$ a set of additional edges not yet in $G$. The {multiple edge insertion} problem (MEI) asks for a drawing of $G+F$ with the minimum number of pairwise edge crossings, such that the subdrawing of $G$ is plane. An optimal solution to this problem approximates the crossing number of the graph $G+F$. Finding an exact solution to MEI is NP-hard for general $F$, but linear time solvable for the special case of $|F|=1$ (SODA01, Algorithmica) or when all of $F$ are incident to a new vertex (SODA09). The complexity for general $F$ but with constant $k=|F|$ was open, but algorithms both with relative and absolute approximation guarantees have been presented (SODA11, ICALP11). We show that the problem is fixed parameter tractable (FPT) in $k$ for biconnected $G$, or if the cut vertices of $G$ have degrees bounded by a constant. We give the first exact algorithm for this problem; it requires only $O(|V(G)|)$ time for any constant $k$.
- Subjects :
- Computer Science - Data Structures and Algorithms
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1509.07952
- Document Type :
- Working Paper