Back to Search
Start Over
Symmetries of general non-Markovian Gaussian diffusive unravelings
- Source :
- Phys. Rev. A 92, 052101 (2015)
- Publication Year :
- 2015
-
Abstract
- By using a condition of average trace preservation we derive a general class of non-Markovian Gaussian diffusive unravelings [L. Diosi and L. Ferialdi, Phys. Rev. Lett. \textbf{113}, 200403 (2014)], here valid for arbitrary non-Hermitian system operators and noise correlations. The conditions under which the generalized stochastic Schrodinger equation has the same symmetry properties (invariance under unitary changes of operator base) than a microscopic system-bath Hamiltonian dynamics are determined. While the standard quantum diffusion model (standard noise correlations) always share the same invariance symmetry, the generalized stochastic dynamics can be mapped with an arbitrary bosonic environment only if some specific correlation constraints are fulfilled. These features are analyzed for different non-Markovian unravelings equivalent in average. Results based on quantum measurement theory that lead to specific cases of the generalized dynamics [J. Gambetta and H. M. Wiseman, Phys. Rev. A \textbf{66}, 012108 (2002)]\ are studied from the perspective of the present analysis.<br />Comment: 10 pages, published version
- Subjects :
- Quantum Physics
Subjects
Details
- Database :
- arXiv
- Journal :
- Phys. Rev. A 92, 052101 (2015)
- Publication Type :
- Report
- Accession number :
- edsarx.1509.00889
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1103/PhysRevA.92.052101