Back to Search
Start Over
Detection of Fast-Moving Waves Propagating Outward along Sunspots' Radial Direction in the Photosphere
- Publication Year :
- 2015
-
Abstract
- Helioseismic and magnetohydrodynamic waves are abundant in and above sunspots. Through cross-correlating oscillation signals in the photosphere observed by the SDO/HMI, we reconstruct how waves propagate away from virtual wave sources located inside a sunspot. In addition to the usual helioseismic wave, a fast-moving wave is detected traveling along the sunspot's radial direction from the umbra to about 15 Mm beyond the sunspot boundary. The wave has a frequency range of 2.5 - 4.0 mHz with a phase velocity of 45.3 km/s, substantially faster than the typical speeds of Alfven and magnetoacoustic waves in the photosphere. The observed phenomenon is consistent with a scenario of that a magnetoacoustic wave is excited at approximately 5 Mm beneath the sunspot, and its wavefront travels to and sweeps across the photosphere with a speed higher than the local magnetoacoustic speed. The fast-moving wave, if truly excited beneath the sunspot's surface, will help open a new window to study the internal structure and dynamics of sunspots.<br />Comment: Accepted for publication in ApJ Letters
- Subjects :
- Astrophysics - Solar and Stellar Astrophysics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1507.04795
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1088/2041-8205/809/1/L15