Back to Search Start Over

Coherent 100G Nonlinear Compensation with Single-Step Digital Backpropagation

Authors :
Secondini, Marco
Rommel, Simon
Fresi, Francesco
Forestieri, Enrico
Meloni, Gianluca
Potì, Luca
Publication Year :
2015

Abstract

Enhanced-SSFM digital backpropagation (DBP) is experimentally demonstrated and compared to conventional DBP. A 112 Gb/s PM-QPSK signal is transmitted over a 3200 km dispersion-unmanaged link. The intradyne coherent receiver includes single-step digital backpropagation based on the enhanced-SSFM algorithm. In comparison, conventional DBP requires twenty steps to achieve the same performance. An analysis of the computational complexity and structure of the two algorithms reveals that the overall complexity and power consumption of DBP are reduced by a factor of 16 with respect to a conventional implementation, while the computation time is reduced by a factor of 20. As a result, the proposed algorithm enables a practical and effective implementation of DBP in real-time optical receivers, with only a moderate increase of the computational complexity, power consumption, and latency with respect to a simple feed-forward equalizer for dispersion compensation.<br />Comment: This work has been presented at Optical Networks Design & Modeling (ONDM) 2015, Pisa, Italy, May 11-14, 2015

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1507.00921
Document Type :
Working Paper