Back to Search
Start Over
Dequantization via quantum channels
- Source :
- Lett. Math. Phys. Vol 106, Issue 10, pp. 1397-1414 (2016)
- Publication Year :
- 2015
-
Abstract
- For a unital completely positive map $\Phi$ ("quantum channel") governing the time propagation of a quantum system, the Stinespring representation gives an enlarged system evolving unitarily. We argue that the Stinespring representations of each power $\Phi^m$ of the single map together encode the structure of the original quantum channel and provides an interaction-dependent model for the bath. The same bath model gives a "classical limit" at infinite time $m\to\infty$ in the form of a noncommutative "manifold" determined by the channel. In this way a simplified analysis of the system can be performed by making the large-$m$ approximation. These constructions are based on a noncommutative generalization of Berezin quantization. The latter is shown to involve very fundamental aspects of quantum-information theory, which are thereby put in a completely new light.
Details
- Database :
- arXiv
- Journal :
- Lett. Math. Phys. Vol 106, Issue 10, pp. 1397-1414 (2016)
- Publication Type :
- Report
- Accession number :
- edsarx.1506.01453
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1007/s11005-016-0874-2