Back to Search Start Over

Effects of Coupled Dark Energy on the Milky Way and its Satellites

Authors :
Penzo, Camilla
Macciò, Andrea V.
Baldi, Marco
Casarini, Luciano
Oñorbe, Jose
Publication Year :
2015

Abstract

We present the first numerical simulations in coupled dark energy cosmologies with high enough resolution to investigate the effects of the coupling on galactic and sub-galactic scales. We choose two constant couplings and a time-varying coupling function and we run simulations of three Milky-Way-size halos ($\sim$10$^{12}$M$_{\odot}$), a lower mass halo (6$\times$10$^{11}$M$_{\odot}$) and a dwarf galaxy halo (5$\times$10$^{9}$M$_{\odot}$). We resolve each halo with several millions dark matter particles. On all scales the coupling causes lower halo concentrations and a reduced number of substructures with respect to LCDM. We show that the reduced concentrations are not due to different formation times, but they are related to the extra terms that appear in the equations describing the gravitational dynamics. On the scale of the Milky Way satellites, we show that the lower concentrations can help in reconciling observed and simulated rotation curves, but the coupling values necessary to have a significant difference from LCDM are outside the current observational constraints. On the other hand, if other modifications to the standard model allowing a higher coupling (e.g. massive neutrinos) are considered, coupled dark energy can become an interesting scenario to alleviate the small-scale issues of the LCDM model.<br />Comment: 12 pages, 16 figures, submitted to MNRAS

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1504.07243
Document Type :
Working Paper
Full Text :
https://doi.org/10.1093/mnras/stw1502