Back to Search Start Over

Asymptotics of orthogonal polynomials generated by a Geronimus perturbation of the Laguerre measure

Authors :
Deaño, Alfredo
Huertas, Edmundo J.
Román, Pablo
Publication Year :
2015

Abstract

This paper deals with monic orthogonal polynomials generated by a Geronimus canonical spectral transformation of the Laguerre classical measure: \[ \frac{1}{x-c}x^{\alpha }e^{-x}dx+N\delta (x-c), \] for $x\in[0,\infty)$, $\alpha>-1$, a free parameter $N\in \mathbb{R}_{+}$ and a shift $c<0$. We analyze the asymptotic behavior (both strong and relative to classical Laguerre polynomials) of these orthogonal polynomials as $n$ tends to infinity.<br />Comment: 17 pages, no figures

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1504.05976
Document Type :
Working Paper