Back to Search
Start Over
Asymptotics of orthogonal polynomials generated by a Geronimus perturbation of the Laguerre measure
- Publication Year :
- 2015
-
Abstract
- This paper deals with monic orthogonal polynomials generated by a Geronimus canonical spectral transformation of the Laguerre classical measure: \[ \frac{1}{x-c}x^{\alpha }e^{-x}dx+N\delta (x-c), \] for $x\in[0,\infty)$, $\alpha>-1$, a free parameter $N\in \mathbb{R}_{+}$ and a shift $c<0$. We analyze the asymptotic behavior (both strong and relative to classical Laguerre polynomials) of these orthogonal polynomials as $n$ tends to infinity.<br />Comment: 17 pages, no figures
- Subjects :
- Mathematics - Classical Analysis and ODEs
33C45, 41A60, 33C15
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1504.05976
- Document Type :
- Working Paper