Back to Search
Start Over
Variable selection and estimation for semi-parametric multiple-index models
- Source :
- Bernoulli 2015, Vol. 21, No. 1, 242-275
- Publication Year :
- 2015
-
Abstract
- In this paper, we propose a novel method to select significant variables and estimate the corresponding coefficients in multiple-index models with a group structure. All existing approaches for single-index models cannot be extended directly to handle this issue with several indices. This method integrates a popularly used shrinkage penalty such as LASSO with the group-wise minimum average variance estimation. It is capable of simultaneous dimension reduction and variable selection, while incorporating the group structure in predictors. Interestingly, the proposed estimator with the LASSO penalty then behaves like an estimator with an adaptive LASSO penalty. The estimator achieves consistency of variable selection without sacrificing the root-$n$ consistency of basis estimation. Simulation studies and a real-data example illustrate the effectiveness and efficiency of the new method.<br />Comment: Published at http://dx.doi.org/10.3150/13-BEJ566 in the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm)
- Subjects :
- Mathematics - Statistics Theory
Subjects
Details
- Database :
- arXiv
- Journal :
- Bernoulli 2015, Vol. 21, No. 1, 242-275
- Publication Type :
- Report
- Accession number :
- edsarx.1504.02654
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.3150/13-BEJ566