Back to Search Start Over

Galaxy sizes as a function of environment at intermediate redshift from the ESO Distant Cluster Survey

Authors :
Kelkar, Kshitija
Aragón-Salamanca, Alfonso
Gray, Meghan E.
Maltby, David
Vulcani, Benedetta
De Lucia, Gabriella
Poggianti, Bianca M.
Zaritsky, Dennis
Publication Year :
2015

Abstract

In order to assess whether the environment has a significant effect on galaxy sizes, we compare the mass--size relations of cluster and field galaxies in the $0.4 < z < 0.8$ redshift range from the ESO Distant Cluster Survey (EDisCS) using HST images. We analyse two mass-selected samples, one defined using photometric redshifts ($10.2 \le \log M_\ast/M_{\odot} \le 12.0$), and a smaller more robust subsample using spectroscopic redshifts ($10.6 \le \log M_\ast/M_{\odot} \le 11.8$). We find no significant difference in the size distributions of cluster and field galaxies of a given morphology. Similarly, we find no significant difference in the size distributions of cluster and field galaxies of similar rest-frame $B-V$ colours. We rule out average size differences larger than $10$--$20$\% in both cases. Consistent conclusions are found with the spectroscopic and photometric samples. These results have important consequences for the physical process(es) responsible for the size evolution of galaxies, and in particular the effect of the environment. The remarkable growth in galaxy size observed from $z\sim2.5$ has been reported to depend on the environment at higher redshifts ($z>1$), with early-type/passive galaxies in higher density environments growing earlier. Such dependence disappears at lower redshifts. Therefore, if the reported difference at higher-$z$ is real, the growth of field galaxies has caught up with that of cluster galaxies by $z\sim1$. Any putative mechanism responsible for galaxy growth has to account for the existence of environmental differences at high redshift and their absence (or weakening) at lower redshifts.<br />Comment: 11 pages, 5 figures. Accepted for publication in MNRAS

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1503.08225
Document Type :
Working Paper
Full Text :
https://doi.org/10.1093/mnras/stv670