Back to Search Start Over

The weighted Singer conjecture for Coxeter groups in dimensions three and four

Authors :
Mogilski, Wiktor J.
Source :
Algebr. Geom. Topol. 16 (2016) 2067-2105
Publication Year :
2015

Abstract

Given a Coxeter system $(W,S)$ there is a contractible simplicial complex $\Sigma$ called the Davis complex on which $W$ acts properly and cocompactly. In an article of Dymara, the weighted $L^2$-(co)homology groups of $\Sigma$ were defined, and in an article of Davis-Dymara-Januszkiewicz-Okun, the Singer conjecture for Coxeter groups was appropriately formulated for weighted $L^2$-(co)homology theory. In this article, we prove the weighted version of the Singer conjecture in dimension three under the assumption that the nerve of the Coxeter group is not dual to a hyperbolic simplex, and in dimension four under additional restrictions. We then prove a general version of the conjecture where the nerve of the Coxeter group is assumed to be a flag triangulation of a $3$-manifold.<br />Comment: 9 pages, 0 figures

Details

Database :
arXiv
Journal :
Algebr. Geom. Topol. 16 (2016) 2067-2105
Publication Type :
Report
Accession number :
edsarx.1503.02518
Document Type :
Working Paper
Full Text :
https://doi.org/10.2140/agt.2016.16.2067