Back to Search
Start Over
Betti numbers of skeletons
- Publication Year :
- 2015
-
Abstract
- We demonstrate that the Betti numbers associated to an N-graded minimal free resolution of the Stanley-Reisner ring of the (d-1)-skeleton of a simplicial complex of dimension d can be expressed as a Z-linear combination of the corresponding Betti numbers of the complex itself. An immediate implication of our main result is that the projective dimension of the Stanley-Reisner ring of the (d-1)-skeleton is at most one greater than the projective dimension of the Stanley-Reisner ring of the original complex, and it thus provides a new and direct proof of this. Our result extends immediately to matroids and their truncations. A similar result for matroid elongations can not be hoped for, but we do obtain a weaker result for these.<br />Comment: 16 pages
- Subjects :
- Mathematics - Combinatorics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1502.05670
- Document Type :
- Working Paper