Back to Search
Start Over
Learning Local Invariant Mahalanobis Distances
- Publication Year :
- 2015
-
Abstract
- For many tasks and data types, there are natural transformations to which the data should be invariant or insensitive. For instance, in visual recognition, natural images should be insensitive to rotation and translation. This requirement and its implications have been important in many machine learning applications, and tolerance for image transformations was primarily achieved by using robust feature vectors. In this paper we propose a novel and computationally efficient way to learn a local Mahalanobis metric per datum, and show how we can learn a local invariant metric to any transformation in order to improve performance.
- Subjects :
- Computer Science - Learning
Statistics - Machine Learning
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1502.01176
- Document Type :
- Working Paper