Back to Search
Start Over
Characterisations of elementary pseudo-caps and good eggs
- Publication Year :
- 2015
-
Abstract
- In this note, we use the theory of Desarguesian spreads to investigate good eggs. Thas showed that an egg in $\mathrm{PG}(4n-1, q)$, $q$ odd, with two good elements is elementary. By a short combinatorial argument, we show that a similar statement holds for large pseudo-caps, in odd and even characteristic. As a corollary, this improves and extends the result of Thas, Thas and Van Maldeghem (2006) where one needs at least 4 good elements of an egg in even characteristic to obtain the same conclusion. We rephrase this corollary to obtain a characterisation of the generalised quadrangle $T_3(\mathcal{O})$ of Tits. Lavrauw (2005) characterises elementary eggs in odd characteristic as those good eggs containing a space that contains at least 5 elements of the egg, but not the good element. We provide an adaptation of this characterisation for weak eggs in odd and even characteristic. As a corollary, we obtain a direct geometric proof for the theorem of Lavrauw.
- Subjects :
- Mathematics - Combinatorics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1502.01150
- Document Type :
- Working Paper