Back to Search
Start Over
Rankin--Eisenstein classes for modular forms
- Source :
- American J. Math. 142 (2020), no. 1, 79--138
- Publication Year :
- 2015
-
Abstract
- In this paper we make a systematic study of certain motivic cohomology classes ("Rankin-Eisenstein classes") attached to the Rankin--Selberg convolution of two modular forms of weight $\ge 2$. The main result is the computation of the $p$-adic syntomic regulators of these classes. As a consequence we prove many cases of the Perrin-Riou conjecture for Rankin--Selberg convolutions of cusp forms.<br />Comment: Updated version with minor corrections. To appear in Amer. J. Math
- Subjects :
- Mathematics - Number Theory
11F85, 11F67, 11G40, 14G35
Subjects
Details
- Database :
- arXiv
- Journal :
- American J. Math. 142 (2020), no. 1, 79--138
- Publication Type :
- Report
- Accession number :
- edsarx.1501.03289
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1353/ajm.2020.0002