Back to Search Start Over

Rankin--Eisenstein classes for modular forms

Authors :
Kings, Guido
Loeffler, David
Zerbes, Sarah Livia
Source :
American J. Math. 142 (2020), no. 1, 79--138
Publication Year :
2015

Abstract

In this paper we make a systematic study of certain motivic cohomology classes ("Rankin-Eisenstein classes") attached to the Rankin--Selberg convolution of two modular forms of weight $\ge 2$. The main result is the computation of the $p$-adic syntomic regulators of these classes. As a consequence we prove many cases of the Perrin-Riou conjecture for Rankin--Selberg convolutions of cusp forms.<br />Comment: Updated version with minor corrections. To appear in Amer. J. Math

Details

Database :
arXiv
Journal :
American J. Math. 142 (2020), no. 1, 79--138
Publication Type :
Report
Accession number :
edsarx.1501.03289
Document Type :
Working Paper
Full Text :
https://doi.org/10.1353/ajm.2020.0002