Back to Search Start Over

Linear and Nonlinear Surface Waves in Electrohydrodynamics

Authors :
Hunt, Matthew
Parau, Emilian
Vanden-broeck, Jean-Marc
Papageorgiou, Demetrios
Publication Year :
2015

Abstract

The problem of interest in this article are waves on a layer of finite depth governed by the Euler equations in the presence of gravity, surface tension, and vertical electric fields. Perturbation theory is used to identify canonical scalings and to derive a Kadomtsev-Petviashvili equation withan additional non-local term arising in interfacial electrohydrodynamics.When the Bond number is equal to 1/3, dispersion disappears and shock waves could potentially form. In the additional limit of vanishing electric fields, a new evolution equation is obtained which contains third and fifth-order dispersion as well as a non-local electric field term.<br />Comment: 12 pages, 3 figures

Subjects

Subjects :
Physics - Fluid Dynamics

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1501.02783
Document Type :
Working Paper