Back to Search Start Over

How to Calculate Molecular Column Density

Authors :
Mangum, Jeffrey G.
Shirley, Yancy L.
Publication Year :
2015

Abstract

The calculation of the molecular column density from molecular spectral (rotational or ro-vibrational) transition measurements is one of the most basic quantities derived from molecular spectroscopy. Starting from first principles where we describe the basic physics behind the radiative and collisional excitation of molecules and the radiative transfer of their emission, we derive a general expression for the molecular column density. As the calculation of the molecular column density involves a knowledge of the molecular energy level degeneracies, rotational partition functions, dipole moment matrix elements, and line strengths, we include generalized derivations of these molecule-specific quantities. Given that approximations to the column density equation are often useful, we explore the optically thin, optically thick, and low-frequency limits to our derived general molecular column density relation. We also evaluate the limitations of the common assumption that the molecular excitation temperature is constant, and address the distinction between beam- and source-averaged column densities. We conclude our discussion of the molecular column density with worked examples for C$^{18}$O, C$^{17}$O, N$_2$H$^+$, NH$_3$, and H$_2$CO. Ancillary information on some subtleties involving line profile functions, conversion between integrated flux and brightness temperature, the calculation of the uncertainty associated with an integrated intensity measurement, the calculation of spectral line optical depth using hyperfine or isotopologue measurements, the calculation of the kinetic temperature from a symmetric molecule excitation temperature measurement, and relative hyperfine intensity calculations for NH$_3$ are presented in appendices. The intent of this document is to provide a reference for researchers studying astrophysical molecular spectroscopic measurements.<br />Comment: 35 pages with 15 figures and 20 tables. Appeared in the March 2015 issue of PASP. Latest version corrects a factor-of-two error in Eq. 100 (corrigendum to appear in PASP) and previous corrigendum (February 2016 issue of PASP): (1) Fix error in dipole moment units; (2) Fixed errors in constants for worked column density equations for C18O 1-0 (Eq. 90), C17O 1-0 (Eq. 93), and N2H+ 1-0 (Eq. 96)

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1501.01703
Document Type :
Working Paper
Full Text :
https://doi.org/10.1086/680323