Back to Search Start Over

The LEECH Exoplanet Imaging Survey. Further constraints on the planet architecture of the HR 8799 system

Authors :
Maire, A. -L.
Skemer, A. J.
Hinz, P. M.
Desidera, S.
Esposito, S.
Gratton, R.
Marzari, F.
Skrutskie, M. F.
Biller, B. A.
Defrère, D.
Bailey, V. P.
Leisenring, J. M.
Apai, D.
Bonnefoy, M.
Brandner, W.
Buenzli, E.
Claudi, R. U.
Close, L. M.
Crepp, J. R.
De Rosa, R. J.
Eisner, J. A.
Fortney, J. J.
Henning, T.
Hofmann, K. -H.
Kopytova, T. G.
Males, J. R.
Mesa, D.
Morzinski, K. M.
Oza, A.
Patience, J.
Pinna, E.
Rajan, A.
Schertl, D.
Schlieder, J. E.
Su, K. Y. L.
Vaz, A.
Ward-Duong, K.
Weigelt, G.
Woodward, C. E.
Publication Year :
2014

Abstract

Context. Astrometric monitoring of directly-imaged exoplanets allows the study of their orbital parameters and system architectures. Because most directly-imaged planets have long orbital periods (>20 AU), accurate astrometry is challenging when based on data acquired on timescales of a few years and usually with different instruments. The LMIRCam camera on the LBT is being used for the LEECH survey to search for and characterize young and adolescent exoplanets in L' band, including their system architectures. Aims. We first aim to provide a good astrometric calibration of LMIRCam. Then, we derive new astrometry, test the predictions of the orbital model of 8:4:2:1 mean motion resonance proposed by Go\'zdziewski & Migaszewski, and perform new orbital fitting of the HR 8799 bcde planets. We also present deep limits on a putative fifth planet interior to the known planets. Methods. We use observations of HR 8799 and the Theta1 Ori C field obtained during the same run in October 2013. Results. We first characterize the distortion of LMIRCam. We determine a platescale and a true north orientation for the images of 10.707 +/- 0.012 mas/pix and -0.430 +/- 0.076 deg, respectively. The errors on the platescale and true north orientation translate into astrometric accuracies at a separation of 1 of 1.1 mas and 1.3 mas, respectively. The measurements for all planets are usually in agreement within 3 sigma with the ephemeris predicted by Go\'zdziewski & Migaszewski. The orbital fitting based on the new astrometric measurements favors an architecture for the planetary system based on 8:4:2:1 mean motion resonance. The detection limits allow us to exclude a fifth planet slightly brighter/more massive than HR 8799 b at the location of the 2:1 resonance with HR 8799 e (~9.5 AU) and about twice as bright as HR 8799 cde at the location of the 3:1 resonance with HR 8799 e (~7.5 AU).<br />Comment: 10 pages, 3 figures, accepted for publication in A&A

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1412.6989
Document Type :
Working Paper
Full Text :
https://doi.org/10.1051/0004-6361/201425185