Back to Search
Start Over
The Eynard-Orantin recursion and equivariant mirror symmetry for the projective line
- Source :
- Geom. Topol. 21 (2017) 2049-2092
- Publication Year :
- 2014
-
Abstract
- We study the equivariantly perturbed mirror Landau-Ginzburg model of the projective line. We show that the Eynard-Orantin recursion on this model encodes all genus all descendants equivariant Gromov-Witten invariants of the projective line. The non-equivariant limit of this result is the Norbury-Scott conjecture, while by taking large radius limit we recover the Bouchard-Marino conjecture on simple Hurwitz numbers.<br />Comment: 34 pages, 5 figures; references added, typos corrected
- Subjects :
- Mathematics - Algebraic Geometry
Subjects
Details
- Database :
- arXiv
- Journal :
- Geom. Topol. 21 (2017) 2049-2092
- Publication Type :
- Report
- Accession number :
- edsarx.1411.3557
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.2140/gt.2017.21.2049