Back to Search Start Over

The Eynard-Orantin recursion and equivariant mirror symmetry for the projective line

Authors :
Fang, Bohan
Liu, Chiu-Chu Melissa
Zong, Zhengyu
Source :
Geom. Topol. 21 (2017) 2049-2092
Publication Year :
2014

Abstract

We study the equivariantly perturbed mirror Landau-Ginzburg model of the projective line. We show that the Eynard-Orantin recursion on this model encodes all genus all descendants equivariant Gromov-Witten invariants of the projective line. The non-equivariant limit of this result is the Norbury-Scott conjecture, while by taking large radius limit we recover the Bouchard-Marino conjecture on simple Hurwitz numbers.<br />Comment: 34 pages, 5 figures; references added, typos corrected

Subjects

Subjects :
Mathematics - Algebraic Geometry

Details

Database :
arXiv
Journal :
Geom. Topol. 21 (2017) 2049-2092
Publication Type :
Report
Accession number :
edsarx.1411.3557
Document Type :
Working Paper
Full Text :
https://doi.org/10.2140/gt.2017.21.2049