Back to Search
Start Over
On Succinct Representations of Binary Trees
- Publication Year :
- 2014
-
Abstract
- We observe that a standard transformation between \emph{ordinal} trees (arbitrary rooted trees with ordered children) and binary trees leads to interesting succinct binary tree representations. There are four symmetric versions of these transformations. Via these transformations we get four succinct representations of $n$-node binary trees that use $2n + n/(\log n)^{O(1)}$ bits and support (among other operations) navigation, inorder numbering, one of pre- or post-order numbering, subtree size and lowest common ancestor (LCA) queries. The ability to support inorder numbering is crucial for the well-known range-minimum query (RMQ) problem on an array $A$ of $n$ ordered values. While this functionality, and more, is also supported in $O(1)$ time using $2n + o(n)$ bits by Davoodi et al.'s (\emph{Phil. Trans. Royal Soc. A} \textbf{372} (2014)) extension of a representation by Farzan and Munro (\emph{Algorithmica} \textbf{6} (2014)), their \emph{redundancy}, or the $o(n)$ term, is much larger, and their approach may not be suitable for practical implementations. One of these transformations is related to the Zaks' sequence (S.~Zaks, \emph{Theor. Comput. Sci.} \textbf{10} (1980)) for encoding binary trees, and we thus provide the first succinct binary tree representation based on Zaks' sequence. Another of these transformations is equivalent to Fischer and Heun's (\emph{SIAM J. Comput.} \textbf{40} (2011)) \minheap\ structure for this problem. Yet another variant allows an encoding of the Cartesian tree of $A$ to be constructed from $A$ using only $O(\sqrt{n} \log n)$ bits of working space.<br />Comment: Journal version of part of COCOON 2012 paper
- Subjects :
- Computer Science - Data Structures and Algorithms
F.2.2
E.2
E.4
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1410.4963
- Document Type :
- Working Paper