Back to Search Start Over

Location of Poles for the Hastings-McLeod Solution to the Second Painlev\'{e} Equation

Authors :
Huang, Min
Xu, Shuai-Xia
Zhang, Lun
Publication Year :
2014

Abstract

We show that the well-known Hastings-McLeod solution to the second Painlev\'{e} equation is pole-free in the region $\arg x \in [-\frac{\pi}{3},\frac{\pi}{3}]\cup [\frac{2\pi}{3},\frac{ 4 \pi}{3}]$, which proves an important special case of a general conjecture concerning pole distributions of Painlev\'{e} transcedents proposed by Novokshenov. Our strategy is to construct explicit quasi-solutions approximating the Hastings-McLeod solution in different regions of the complex plane, and estimate the errors rigorously. The main idea is very similar to the one used to prove Dubrovin's conjecture for the first Painlev\'{e} equation, but there are various technical improvements.<br />Comment: 31 pages, 2 figures. Minor revision, to appear in Constructive Approximation

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1410.3338
Document Type :
Working Paper