Back to Search
Start Over
Searching for Chemical Signatures of Multiple Stellar Populations in the Old, Massive Open Cluster NGC 6791
- Publication Year :
- 2014
-
Abstract
- Galactic open and globular clusters (OCs, GCs) appear to inhabit separate regions of the age-mass plane. However, the transition between them is not easily defined because there is some overlap between high-mass, old OCs and low-mass, young GCs. We are exploring the possibility of a clear-cut separation between OCs and GCs using an abundance feature that has been found so far only in GCs: (anti)correlations between light elements. Among the coupled abundance trends, the Na-O anticorrelation is the most widely studied. These anticorrelations are the signature of self-enrichment, i.e., of a formation mechanism that implies multiple generations of stars. Here we concentrate on the old, massive, metal-rich OC NGC 6791. We analyzed archival Keck/HIRES spectra of 15 NGC 6791 main sequence turn-off and evolved stars, concentrating on the derivation of C, N, O, and Na abundances. We also used WIYN/Hydra spectra of 21 evolved stars (one is in common). Given the spectral complexity of the very metal-rich NGC 6791 stars, we employed spectrum synthesis to measure most of the abundances. We confirmed the cluster super-solar metallicity and abundances of Ca and Ni that have been derived in past studies. More importantly, we did not detect any significant star-to-star abundance dispersion in C, N, O and Na. Based on the absence of a clear Na-O anticorrelation, NGC 6791 can still be considered a true OC, hosting a single generation of stars, and not a low-mass GC.<br />Comment: In press on ApJ; 3 tables, 11 figures
- Subjects :
- Astrophysics - Solar and Stellar Astrophysics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1409.8283
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1088/0004-637X/796/1/68