Back to Search Start Over

Correlation between centrality metrics and their application to the opinion model

Authors :
Li, Cong
Li, Qian
Van Mieghem, Piet
Stanley, H. Eugene
Wang, Huijuan
Publication Year :
2014

Abstract

In recent decades, a number of centrality metrics describing network properties of nodes have been proposed to rank the importance of nodes. In order to understand the correlations between centrality metrics and to approximate a high-complexity centrality metric by a strongly correlated low-complexity metric, we first study the correlation between centrality metrics in terms of their Pearson correlation coefficient and their similarity in ranking of nodes. In addition to considering the widely used centrality metrics, we introduce a new centrality measure, the degree mass. The m order degree mass of a node is the sum of the weighted degree of the node and its neighbors no further than m hops away. We find that the B_{n}, the closeness, and the components of x_{1} are strongly correlated with the degree, the 1st-order degree mass and the 2nd-order degree mass, respectively, in both network models and real-world networks. We then theoretically prove that the Pearson correlation coefficient between x_{1} and the 2nd-order degree mass is larger than that between x_{1} and a lower order degree mass. Finally, we investigate the effect of the inflexible antagonists selected based on different centrality metrics in helping one opinion to compete with another in the inflexible antagonists opinion model. Interestingly, we find that selecting the inflexible antagonists based on the leverage, the B_{n}, or the degree is more effective in opinion-competition than using other centrality metrics in all types of networks. This observation is supported by our previous observations, i.e., that there is a strong linear correlation between the degree and the B_{n}, as well as a high centrality similarity between the leverage and the degree.<br />Comment: 20 pages

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1409.6033
Document Type :
Working Paper
Full Text :
https://doi.org/10.1140/epjb/e2015-50671-y