Back to Search Start Over

On the empirical multilinear copula process for count data

Authors :
Genest, Christian
Nešlehová, Johanna G.
Rémillard, Bruno
Source :
Bernoulli 2014, Vol. 20, No. 3, 1344-1371
Publication Year :
2014

Abstract

Continuation refers to the operation by which the cumulative distribution function of a discontinuous random vector is made continuous through multilinear interpolation. The copula that results from the application of this technique to the classical empirical copula is either called the multilinear or the checkerboard copula. As shown by Genest and Ne\v{s}lehov\'{a} (Astin Bull. 37 (2007) 475-515) and Ne\v{s}lehov\'{a} (J. Multivariate Anal. 98 (2007) 544-567), this copula plays a central role in characterizing dependence concepts in discrete random vectors. In this paper, the authors establish the asymptotic behavior of the empirical process associated with the multilinear copula based on $d$-variate count data. This empirical process does not generally converge in law on the space $\mathcal {C}([0,1]^d)$ of continuous functions on $[0,1]^d$, equipped with the uniform norm. However, the authors show that the process converges in $\mathcal{C}(K)$ for any compact $K\subset\mathcal{O}$, where $\mathcal{O}$ is a dense open subset of $[0,1]^d$, whose complement is the Cartesian product of the ranges of the marginal distribution functions. This result is sufficient to deduce the weak limit of many functionals of the process, including classical statistics for monotone trend. It also leads to a powerful and consistent test of independence which is applicable even to sparse contingency tables whose dimension is sample size dependent.<br />Comment: Published in at http://dx.doi.org/10.3150/13-BEJ524 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm)

Subjects

Subjects :
Mathematics - Statistics Theory

Details

Database :
arXiv
Journal :
Bernoulli 2014, Vol. 20, No. 3, 1344-1371
Publication Type :
Report
Accession number :
edsarx.1407.1200
Document Type :
Working Paper
Full Text :
https://doi.org/10.3150/13-BEJ524