Back to Search Start Over

Solving the 'Isomorphism of Polynomials with Two Secrets' Problem for all Pairs of Quadratic Forms

Authors :
Plût, Jérôme
Fouque, Pierre-Alain
Macario-Rat, Gilles
Publication Year :
2014

Abstract

We study the Isomorphism of Polynomial (IP2S) problem with m=2 homogeneous quadratic polynomials of n variables over a finite field of odd characteristic: given two quadratic polynomials (a, b) on n variables, we find two bijective linear maps (s,t) such that b=t . a . s. We give an algorithm computing s and t in time complexity O~(n^4) for all instances, and O~(n^3) in a dominant set of instances. The IP2S problem was introduced in cryptography by Patarin back in 1996. The special case of this problem when t is the identity is called the isomorphism with one secret (IP1S) problem. Generic algebraic equation solvers (for example using Gr\"obner bases) solve quite well random instances of the IP1S problem. For the particular cyclic instances of IP1S, a cubic-time algorithm was later given and explained in terms of pencils of quadratic forms over all finite fields; in particular, the cyclic IP1S problem in odd characteristic reduces to the computation of the square root of a matrix. We give here an algorithm solving all cases of the IP1S problem in odd characteristic using two new tools, the Kronecker form for a singular quadratic pencil, and the reduction of bilinear forms over a non-commutative algebra. Finally, we show that the second secret in the IP2S problem may be recovered in cubic time.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1406.3163
Document Type :
Working Paper