Back to Search Start Over

Eigenvalues and Transduction of Morphic Sequences: Extended Version

Authors :
Sprunger, David
Tune, William
Endrullis, Jörg
Moss, Lawrence S.
Publication Year :
2014

Abstract

We study finite state transduction of automatic and morphic sequences. Dekking proved that morphic sequences are closed under transduction and in particular morphic images. We present a simple proof of this fact, and use the construction in the proof to show that non-erasing transductions preserve a condition called alpha-substitutivity. Roughly, a sequence is alpha-substitutive if the sequence can be obtained as the limit of iterating a substitution with dominant eigenvalue alpha. Our results culminate in the following fact: for multiplicatively independent real numbers alpha and beta, if v is an alpha-substitutive sequence and w is a beta-substitutive sequence, then v and w have no common non-erasing transducts except for the ultimately periodic sequences. We rely on Cobham's theorem for substitutions, a recent result of Durand.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1406.1754
Document Type :
Working Paper