Back to Search
Start Over
A spherical Bernstein theorem for minimal submanifolds of higher codimension
- Publication Year :
- 2014
-
Abstract
- Combining the tools of geometric analysis with properties of Jordan angles and angle space distributions, we derive a spherical and a Euclidean Bernstein theorem for minimal submanifolds of arbitrary dimension and codimension, under the condition that the Gauss image is contained in some geometrically defined closed region of a Grassmannian manifold. The proof depends on the subharmoncity of an auxiliary function, the Codazzi equations and geometric measure theory.<br />Comment: 22 pages
- Subjects :
- Mathematics - Differential Geometry
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1405.5952
- Document Type :
- Working Paper