Back to Search Start Over

Statistical analysis of trajectories on Riemannian manifolds: Bird migration, hurricane tracking and video surveillance

Authors :
Su, Jingyong
Kurtek, Sebastian
Klassen, Eric
Srivastava, Anuj
Source :
Annals of Applied Statistics 2014, Vol. 8, No. 1, 530-552
Publication Year :
2014

Abstract

We consider the statistical analysis of trajectories on Riemannian manifolds that are observed under arbitrary temporal evolutions. Past methods rely on cross-sectional analysis, with the given temporal registration, and consequently may lose the mean structure and artificially inflate observed variances. We introduce a quantity that provides both a cost function for temporal registration and a proper distance for comparison of trajectories. This distance is used to define statistical summaries, such as sample means and covariances, of synchronized trajectories and "Gaussian-type" models to capture their variability at discrete times. It is invariant to identical time-warpings (or temporal reparameterizations) of trajectories. This is based on a novel mathematical representation of trajectories, termed transported square-root vector field (TSRVF), and the $\mathbb{L}^2$ norm on the space of TSRVFs. We illustrate this framework using three representative manifolds---$\mathbb{S}^2$, $\mathrm {SE}(2)$ and shape space of planar contours---involving both simulated and real data. In particular, we demonstrate: (1) improvements in mean structures and significant reductions in cross-sectional variances using real data sets, (2) statistical modeling for capturing variability in aligned trajectories, and (3) evaluating random trajectories under these models. Experimental results concern bird migration, hurricane tracking and video surveillance.<br />Comment: Published in at http://dx.doi.org/10.1214/13-AOAS701 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org)

Subjects

Subjects :
Statistics - Applications

Details

Database :
arXiv
Journal :
Annals of Applied Statistics 2014, Vol. 8, No. 1, 530-552
Publication Type :
Report
Accession number :
edsarx.1405.0803
Document Type :
Working Paper
Full Text :
https://doi.org/10.1214/13-AOAS701