Back to Search
Start Over
On the damped oscillations of an elastic quasi-circular membrane in a two-dimensional incompressible fluid
- Source :
- Journal of Fluid Mechanics, volume 746, pages 300-331 (2014)
- Publication Year :
- 2014
-
Abstract
- We propose a procedure - partly analytical and partly numerical - to find the frequency and the damping rate of the small-amplitude oscillations of a massless elastic capsule immersed in a two-dimensional viscous incompressible fluid. The unsteady Stokes equations for the stream function are decomposed onto normal modes for the angular and temporal variables, leading to a fourth-order linear ordinary differential equation in the radial variable. The forcing terms are dictated by the properties of the membrane, and result into jump conditions at the interface between the internal and external media. The equation can be solved numerically, and an excellent agreement is found with a fully-computational approach we developed in parallel. Comparisons are also shown with the results available in the scientific literature for drops, and a model based on the concept of embarked fluid is presented, which allows for a good representation of the results and a consistent interpretation of the underlying physics.<br />Comment: in press on JFM
- Subjects :
- Physics - Fluid Dynamics
Subjects
Details
- Database :
- arXiv
- Journal :
- Journal of Fluid Mechanics, volume 746, pages 300-331 (2014)
- Publication Type :
- Report
- Accession number :
- edsarx.1403.1423
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1017/jfm.2014.135