Back to Search
Start Over
Backaction-Driven Transport of Bloch Oscillating Atoms in Ring Cavities
- Source :
- Phys. Rev. Lett. 113, 073003 (2014)
- Publication Year :
- 2014
-
Abstract
- We predict that an atomic Bose-Einstein condensate strongly coupled to an intracavity optical lattice can undergo resonant tunneling and directed transport when a constant and uniform bias force is applied. The bias force induces Bloch oscillations, causing amplitude and phase modulation of the lattice which resonantly modifies the site-to-site tunneling. For the right choice of parameters a net atomic current is generated. The transport velocity can be oriented oppositely to the bias force, with its amplitude and direction controlled by the detuning between the pump laser and the cavity. The transport can also be enhanced through imbalanced pumping of the two counter-propagating running wave cavity modes. Our results add to the cold atoms quantum simulation toolbox, with implications for quantum sensing and metrology.<br />Comment: Published version: 5 pages, 4 figures; Supplementary Material included
- Subjects :
- Condensed Matter - Quantum Gases
Physics - Atomic Physics
Quantum Physics
Subjects
Details
- Database :
- arXiv
- Journal :
- Phys. Rev. Lett. 113, 073003 (2014)
- Publication Type :
- Report
- Accession number :
- edsarx.1402.4596
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1103/PhysRevLett.113.073003