Back to Search Start Over

Backaction-Driven Transport of Bloch Oscillating Atoms in Ring Cavities

Authors :
Goldwin, J.
Venkatesh, B. Prasanna
O'Dell, D. H. J.
Source :
Phys. Rev. Lett. 113, 073003 (2014)
Publication Year :
2014

Abstract

We predict that an atomic Bose-Einstein condensate strongly coupled to an intracavity optical lattice can undergo resonant tunneling and directed transport when a constant and uniform bias force is applied. The bias force induces Bloch oscillations, causing amplitude and phase modulation of the lattice which resonantly modifies the site-to-site tunneling. For the right choice of parameters a net atomic current is generated. The transport velocity can be oriented oppositely to the bias force, with its amplitude and direction controlled by the detuning between the pump laser and the cavity. The transport can also be enhanced through imbalanced pumping of the two counter-propagating running wave cavity modes. Our results add to the cold atoms quantum simulation toolbox, with implications for quantum sensing and metrology.<br />Comment: Published version: 5 pages, 4 figures; Supplementary Material included

Details

Database :
arXiv
Journal :
Phys. Rev. Lett. 113, 073003 (2014)
Publication Type :
Report
Accession number :
edsarx.1402.4596
Document Type :
Working Paper
Full Text :
https://doi.org/10.1103/PhysRevLett.113.073003