Back to Search Start Over

Measurement of the intrinsic damping constant in individual nanodisks of YIG and YIG{\textbar}Pt

Authors :
Hahn, Christian
Naletov, Vladimir
de Loubens, Gregoire
Klein, Olivier
Kelly, Olivier d Allivy
Anane, Abdelmadjid
Bernard, Rozenn
Jacquet, Eric
Bortolotti, Paolo
Cros, Vincent
Prieto, Jose Luis
Munoz, Manuel
Publication Year :
2014

Abstract

We report on an experimental study on the spin-waves relaxation rate in two series of nanodisks of diameter $\phi=$300, 500 and 700~nm, patterned out of two systems: a 20~nm thick yttrium iron garnet (YIG) film grown by pulsed laser deposition either bare or covered by 13~nm of Pt. Using a magnetic resonance force microscope, we measure precisely the ferromagnetic resonance linewidth of each individual YIG and YIG{\textbar}Pt nanodisks. We find that the linewidth in the nanostructure is sensibly smaller than the one measured in the extended film. Analysis of the frequency dependence of the spectral linewidth indicates that the improvement is principally due to the suppression of the inhomogeneous part of the broadening due to geometrical confinement, suggesting that only the homogeneous broadening contributes to the linewidth of the nanostructure. For the bare YIG nano-disks, the broadening is associated to a damping constant $\alpha = 4 \cdot 10^{-4}$. A 3 fold increase of the linewidth is observed for the series with Pt cap layer, attributed to the spin pumping effect. The measured enhancement allows to extract the spin mixing conductance found to be $G_{\uparrow \downarrow}= 1.55 \cdot 10^{14}~ \Omega^{-1}\text{m}^{-2}$ for our YIG(20nm){\textbar}Pt interface, thus opening large opportunities for the design of YIG based nanostructures with optimized magnetic losses.<br />Comment: 4 pages, 3 figures

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1402.3630
Document Type :
Working Paper
Full Text :
https://doi.org/10.1063/1.4871516