Back to Search
Start Over
Characterizing faint galaxies in the reionization epoch: LBT confirms two L<0.2L* sources at z=6.4 behind the CLASH/Frontier Fields cluster MACS0717.5+3745
- Publication Year :
- 2013
-
Abstract
- We report the LBT/MODS1 spectroscopic confirmation of two images of faint Lyman alpha emitters at $z=6.4$ behind the Frontier Fields galaxy cluster MACSJ0717.5+3745. A wide range of lens models suggests that the two images are highly magnified, with a strong lower limit of mu>5. These are the faintest z>6 candidates spectroscopically confirmed to date. These may be also multiple images of the same z=6.4 source as supported by their similar intrinsic properties, but the lens models are inconclusive regarding this interpretation. To be cautious, we derive the physical properties of each image individually. Thanks to the high magnification, the observed near-infrared (restframe ultraviolet) part of the spectral energy distributions and Ly-alpha lines are well detected with S/N(m_1500)>~10 and S/N(Ly-alpha)~10-15. Adopting mu>5, the absolute magnitudes, M_1500, and Ly-alpha fluxes, are fainter than -18.7 and 2.8x10^(-18)erg/s/cm2, respectively. We find a very steep ultraviolet spectral slope beta=-3.0+/-0.5 (F_lambda=lambda^(beta)), implying that these are very young, dust-free and low metallicity objects, made of standard stellar populations or even extremely metal poor stars (age<~30Myr, E(B-V)=0 and metallicity 0.0-0.2 Z/Zsolar). The objects are compact (< 1 kpc^(2)), and with a stellar mass M* < 10^(8) M_solar. The very steep beta, the presence of the Ly-alpha line and the intrinsic FWHM (<300 km/s) of these newborn objects do not exclude a possible leakage of ionizing radiation. We discuss the possibility that such faint galaxies may resemble those responsible for cosmic reionization.<br />Comment: Accepted by ApJL; 6 pages, 4 figures, 1 table, emulateapj format
- Subjects :
- Astrophysics - Cosmology and Nongalactic Astrophysics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1312.6299
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1088/2041-8205/783/1/L12