Back to Search
Start Over
Cyclic decomposition of k-permutations and eigenvalues of the arrangement graphs
- Publication Year :
- 2013
-
Abstract
- The (n,k)-arrangement graph A(n,k) is a graph with all the k-permutations of an n-element set as vertices where two k-permutations are adjacent if they agree in exactly k-1 positions. We introduce a cyclic decomposition for k-permutations and show that this gives rise to a very fine equitable partition of A(n,k). This equitable partition can be employed to compute the complete set of eigenvalues (of the adjacency matrix) of A(n,k). Consequently, we determine the eigenvalues of A(n,k) for small values of k. Finally, we show that any eigenvalue of the Johnson graph J(n,k) is an eigenvalue of A(n,k) and that -k is the smallest eigenvalue of A(n,k) with multiplicity O(n^k) for fixed k.<br />Comment: 18 pages. Revised version according to a referee suggestions
- Subjects :
- Mathematics - Combinatorics
05A05, 05C50
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1308.5490
- Document Type :
- Working Paper