Back to Search Start Over

Interface states in CoFe2O4 spin-filter tunnel junctions

Authors :
Lukashev, Pavel V.
Burton, J. D.
Smogunov, Alexander
Velev, Julian P.
Tsymbal, Evgeny Y.
Publication Year :
2013

Abstract

Spin-filter tunneling is a promising way to generate highly spin-polarized current, a key component for spintronics applications. In this work we explore the tunneling conductance across the spin-filter material CoFe2O4 interfaced with Au electrodes, a geometry which provides nearly perfect lattice matching at the CoFe2O4/Au(001) interface. Using density functional theory calculations we demonstrate that interface states play a decisive role in controlling the transport spin polarization in this tunnel junction. For a realistic CoFe2O4 barrier thickness, we predict a tunneling spin polarization of about -60%. We show that this value is lower than what is expected based solely on considerations of the spin-polarized band structure of CoFe2O4, and therefore that these interface states can play a detrimental role. We argue this is a rather general feature of ferrimagnetic ferrites and could make an important impact on spin-filter tunneling applications.<br />Comment: 5 pages, 4 Figures plus 1 page supplement

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1308.3461
Document Type :
Working Paper
Full Text :
https://doi.org/10.1103/PhysRevB.88.134430