Back to Search Start Over

Invariants of wreath products and subgroups of S_6

Authors :
Kang, Ming-chang
Wang, Baoshan
Zhou, Jian
Source :
Kyoto J. Math. 55, no. 2 (2015), 257-279
Publication Year :
2013

Abstract

Let $G$ be a subgroup of $S_6$, the symmetric group of degree 6. For any field $k$, $G$ acts naturally on the rational function field $k(x_1,...,x_6)$ via $k$-automorphisms defined by $\sigma\cdot x_i=x_{\sigma(i)}$ for any $\sigma\in G$, any $1\le i\le 6$. Theorem. The fixed field $k(x_1,...,x_6)^G$ is rational (=purely transcendental) over $k$, except possibly when $G$ is isomorphic to $PSL_2(\bm{F}_5)$, $PGL_2(\bm{F}_5)$ or $A_6$. When $G$ is isomorphic to $PSL_2(\bm{F}_5)$ or $PGL_2(\bm{F}_5)$, then $\bm{C}(x_1,...,x_6)^G$ is $\bm{C}$-rational and $k(x_1,...,x_6)^G$ is stably $k$-rational for any field $k$. The invariant theory of wreath products will be investigated also.

Subjects

Subjects :
Mathematics - Algebraic Geometry

Details

Database :
arXiv
Journal :
Kyoto J. Math. 55, no. 2 (2015), 257-279
Publication Type :
Report
Accession number :
edsarx.1308.0885
Document Type :
Working Paper
Full Text :
https://doi.org/10.1215/21562261-2871749