Back to Search
Start Over
Invariants of wreath products and subgroups of S_6
- Source :
- Kyoto J. Math. 55, no. 2 (2015), 257-279
- Publication Year :
- 2013
-
Abstract
- Let $G$ be a subgroup of $S_6$, the symmetric group of degree 6. For any field $k$, $G$ acts naturally on the rational function field $k(x_1,...,x_6)$ via $k$-automorphisms defined by $\sigma\cdot x_i=x_{\sigma(i)}$ for any $\sigma\in G$, any $1\le i\le 6$. Theorem. The fixed field $k(x_1,...,x_6)^G$ is rational (=purely transcendental) over $k$, except possibly when $G$ is isomorphic to $PSL_2(\bm{F}_5)$, $PGL_2(\bm{F}_5)$ or $A_6$. When $G$ is isomorphic to $PSL_2(\bm{F}_5)$ or $PGL_2(\bm{F}_5)$, then $\bm{C}(x_1,...,x_6)^G$ is $\bm{C}$-rational and $k(x_1,...,x_6)^G$ is stably $k$-rational for any field $k$. The invariant theory of wreath products will be investigated also.
- Subjects :
- Mathematics - Algebraic Geometry
Subjects
Details
- Database :
- arXiv
- Journal :
- Kyoto J. Math. 55, no. 2 (2015), 257-279
- Publication Type :
- Report
- Accession number :
- edsarx.1308.0885
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1215/21562261-2871749