Back to Search
Start Over
Notes on scale-invariance and base-invariance for Benford's Law
- Publication Year :
- 2013
-
Abstract
- It is known that if X is uniformly distributed modulo 1 and Y is an arbitrary random variable independent of X then Y+X is also uniformly distributed modulo 1. We prove a converse for any continuous random variable Y (or a reasonable approximation to a continuous random variable) so that if X and Y+X are equally distributed modulo 1 and Y is independent of X then X is uniformly distributed modulo 1 (or approximates the uniform distribution equally reasonably). This translates into a characterization of Benford's law through a generalization of scale-invariance: from multiplication by a constant to multiplication by an independent random variable. We also show a base-invariance characterization: if a positive continuous random variable has the same significand distribution for two bases then it is Benford for both bases. The set of bases for which a random variable is Benford is characterized through characteristic functions.<br />Comment: 25 pages
- Subjects :
- Mathematics - Probability
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1307.3620
- Document Type :
- Working Paper