Back to Search Start Over

On the Supremum of gamma-reflected Processes with Fractional Brownian Motion as Input

Authors :
Hashorva, Enkelejd
Ji, Lanpeng
Piterbarg, Vladimir I.
Source :
Stochastic Processes and their Applications, 123(11), 4111-4127 (2014)
Publication Year :
2013

Abstract

Let $X_H(t), t\ge 0$ be a fractional Brownian motion with Hurst index $H\in(0,1}$ and define a gamma-reflected process $W_\Ga(t)=X_H(t)-ct-\gammainf_{s\in[0,t]}\left(X_H(s)-cs \right)$, $t\ge0$ with $c>0,\gamma \in [0,1]$ two given constants. In this paper we establish the exact tail asymptotic behaviour of $\sup_{t\in [0,T]} W_\gamma(t)$ for any $T\in (0,\IF]$. Furthermore, we derive the exact tail asymptotic behaviour of the supremum of certain non-homogeneous mean-zero Gaussian random fields.<br />Comment: 15 pages

Details

Database :
arXiv
Journal :
Stochastic Processes and their Applications, 123(11), 4111-4127 (2014)
Publication Type :
Report
Accession number :
edsarx.1306.2000
Document Type :
Working Paper
Full Text :
https://doi.org/10.1016/j.spa.2013.06.007