Back to Search
Start Over
On the Supremum of gamma-reflected Processes with Fractional Brownian Motion as Input
- Source :
- Stochastic Processes and their Applications, 123(11), 4111-4127 (2014)
- Publication Year :
- 2013
-
Abstract
- Let $X_H(t), t\ge 0$ be a fractional Brownian motion with Hurst index $H\in(0,1}$ and define a gamma-reflected process $W_\Ga(t)=X_H(t)-ct-\gammainf_{s\in[0,t]}\left(X_H(s)-cs \right)$, $t\ge0$ with $c>0,\gamma \in [0,1]$ two given constants. In this paper we establish the exact tail asymptotic behaviour of $\sup_{t\in [0,T]} W_\gamma(t)$ for any $T\in (0,\IF]$. Furthermore, we derive the exact tail asymptotic behaviour of the supremum of certain non-homogeneous mean-zero Gaussian random fields.<br />Comment: 15 pages
- Subjects :
- Mathematics - Probability
60G15, 60G70
Subjects
Details
- Database :
- arXiv
- Journal :
- Stochastic Processes and their Applications, 123(11), 4111-4127 (2014)
- Publication Type :
- Report
- Accession number :
- edsarx.1306.2000
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1016/j.spa.2013.06.007