Back to Search Start Over

Entanglement dynamics of a two-qubit system coupled individually to Ohmic baths

Authors :
Duan, Liwei
Wang, Hui
Chen, Qinghu
Zhao, Yang
Source :
J. Chem. Phys. 139, 044115 (2013)
Publication Year :
2013

Abstract

Developed originally for the Holstein polaron, the Davydov D1 ansatz is an efficient, yet extremely accurate trial state for time-dependent variation of the spin-boson model [J. Chem. Phys. 138, 084111 (2013)]. In this work, the Dirac-Frenkel time-dependent variational procedure utilizing the Davydov D1 ansatz is implemented to study entanglement dynamics of two qubits under the influence of two independent baths. The Ohmic spectral density is used without the Born-Markov approximation or the rotating-wave approximation. In the strong coupling regime finite-time disentanglement is always found to exist, while at the intermediate coupling regime, the entanglement dynamics calculated by Davydov D1 ansatz displays oscillatory behavior in addition to entanglement disappearance and revival.<br />Comment: 8 pages, 3 figures

Details

Database :
arXiv
Journal :
J. Chem. Phys. 139, 044115 (2013)
Publication Type :
Report
Accession number :
edsarx.1306.1610
Document Type :
Working Paper
Full Text :
https://doi.org/10.1063/1.4816122