Back to Search
Start Over
On the U_p-operator in characteristic p
- Publication Year :
- 2013
-
Abstract
- For a perfect field \kappa of characteristic p>0, a positive ingeger N not divisible by p, and an arbitrary subgroup \Gamma of GL_2(Z/NZ), we prove (with mild additional hypotheses when p\le 3) that the U-operator on the space M_k(\Gamma/\kappa) of (Katz) modular forms for \Gamma over \kappa induces a surjection U:M_{k}(\Gamma/\kappa)\rightarrow M_{k'}(\Gamma/\kappa) for all k\ge p+2, where k'=(k-k_0)/p + k_0 with 2\le k_0\le p+1 the unique integer congruent to k modulo p. When \kappa=F_p, p\ge 5, N\neq 2,3, and \Gamma is the subgroup of upper-triangular or upper-triangular unipotent matrices, this recovers a recent result of Dewar.
- Subjects :
- Mathematics - Number Theory
11F33, 11G18
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1305.4188
- Document Type :
- Working Paper