Back to Search Start Over

On the U_p-operator in characteristic p

Authors :
Cais, Bryden
Publication Year :
2013

Abstract

For a perfect field \kappa of characteristic p>0, a positive ingeger N not divisible by p, and an arbitrary subgroup \Gamma of GL_2(Z/NZ), we prove (with mild additional hypotheses when p\le 3) that the U-operator on the space M_k(\Gamma/\kappa) of (Katz) modular forms for \Gamma over \kappa induces a surjection U:M_{k}(\Gamma/\kappa)\rightarrow M_{k'}(\Gamma/\kappa) for all k\ge p+2, where k'=(k-k_0)/p + k_0 with 2\le k_0\le p+1 the unique integer congruent to k modulo p. When \kappa=F_p, p\ge 5, N\neq 2,3, and \Gamma is the subgroup of upper-triangular or upper-triangular unipotent matrices, this recovers a recent result of Dewar.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1305.4188
Document Type :
Working Paper