Back to Search
Start Over
A high Eddington-ratio, true Seyfert 2 galaxy candidate: implications for broad-line-region models
- Publication Year :
- 2013
-
Abstract
- A bright, soft X-ray source was detected on 2010 July 14 during an XMM--Newton slew at a position consistent with the galaxy GSN 069 (z=0.018). Previous ROSAT observations failed to detect the source and imply that GSN 069 is now >240 times brighter than it was in 1994 in the soft X-ray band. We report here results from a ~1 yr monitoring with Swift and XMM-Newton, as well as from optical spectroscopy. GSN 069 is an unabsorbed, ultra-soft source in X-rays, with no flux detected above ~1 keV. The soft X-rays exhibit significant variability down to timescales of hundreds of seconds. The UV-to-X-ray spectrum of GSN 069 is consistent with a pure accretion disc model which implies an Eddington ratio of ~0.5 and a black hole mass of ~ 1.2 million solar masses. A new optical spectrum, obtained ~3.5 months after the XMM-Newton slew detection, is consistent with earlier spectra and lacks any broad line component, classifying the source as a Seyfert 2 galaxy. The lack of cold X-ray absorption and the short timescale variability in the soft X-rays rule out a standard Seyfert 2 interpretation of the X-ray data. We discuss our results within the framework of two possible scenarios for the broad-line-region (BLR) in AGN, namely the two-phase model (cold BLR clouds in pressure equilibrium with a hotter medium), and models in which the BLR is part of an outflow, or disc-wind. Finally, we point out that GSN 069 may be a member of a population of super-soft AGN whose SED is completely dominated by accretion disc emission, as it is the case in some black hole X-ray binary transients during their outburst evolution. The disc emission for a typical AGN with larger black hole mass than GSN 069 does not enters the soft X-ray band, so that GSN 069-like objects would likely be missed by current X-ray surveys, or mis-classified as Compton-thick candidates. (ABRIDGED)<br />Comment: Accepted for publication in MNRAS
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1305.3284
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1093/mnras/stt850