Back to Search Start Over

Nonlinear subdiffusive fractional equations and aggregation phenomenon

Authors :
Fedotov, Sergei
Publication Year :
2013

Abstract

In this article we address the problem of the nonlinear interaction of subdiffusive particles. We introduce the random walk model in which statistical characteristics of a random walker such as escape rate and jump distribution depend on the mean field density of particles. We derive a set of nonlinear subdiffusive fractional master equations and consider their diffusion approximations. We show that these equations describe the transition from an intermediate subdiffusive regime to asymptotically normal advection-diffusion transport regime. This transition is governed by nonlinear tempering parameter that generalizes the standard linear tempering. We illustrate the general results through the use of the examples from cell and population biology. We find that a nonuniform anomalous exponent has a strong influence on the aggregation phenomenon.<br />Comment: 10 pages

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1304.2519
Document Type :
Working Paper
Full Text :
https://doi.org/10.1103/PhysRevE.88.032104