Back to Search Start Over

A Common Generalization of the Theorems of Erd\H{o}s-Ko-Rado and Hilton-Milner

Authors :
Li, Wei-Tian
Chen, Bor-Liang
Huang, Kuo-Ching
Lih, Ko-Wei
Publication Year :
2013

Abstract

Let $m$, $n$, and $k$ be integers satisfying $0 < k \leq n < 2k \leq m$. A family of sets $\mathcal{F}$ is called an $(m,n,k)$-intersecting family if $\binom{[n]}{k} \subseteq \mathcal{F} \subseteq \binom{[m]}{k}$ and any pair of members of $\mathcal{F}$ have nonempty intersection. Maximum $(m,k,k)$- and $(m,k+1,k)$-intersecting families are determined by the theorems of Erd\H{o}s-Ko-Rado and Hilton-Milner, respectively. We determine the maximum families for the cases $n = 2k-1, 2k-2, 2k-3$, and $m$ sufficiently large.<br />Comment: 16 pages

Subjects

Subjects :
Mathematics - Combinatorics
05D05

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1304.1861
Document Type :
Working Paper