Back to Search
Start Over
Standardizing Type Ia Supernova Absolute Magnitudes Using Gaussian Process Data Regression
- Publication Year :
- 2013
-
Abstract
- We present a novel class of models for Type Ia supernova time-evolving spectral energy distributions (SED) and absolute magnitudes: they are each modeled as stochastic functions described by Gaussian processes. The values of the SED and absolute magnitudes are defined through well-defined regression prescriptions, so that data directly inform the models. As a proof of concept, we implement a model for synthetic photometry built from the spectrophotometric time series from the Nearby Supernova Factory. Absolute magnitudes at peak $B$ brightness are calibrated to 0.13 mag in the $g$-band and to as low as 0.09 mag in the $z=0.25$ blueshifted $i$-band, where the dispersion includes contributions from measurement uncertainties and peculiar velocities. The methodology can be applied to spectrophotometric time series of supernovae that span a range of redshifts to simultaneously standardize supernovae together with fitting cosmological parameters.<br />Comment: 47 pages, 15 figures, accepted for publication by Astrophysical Journal
- Subjects :
- Astrophysics - Cosmology and Nongalactic Astrophysics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1302.2925
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1088/0004-637X/766/2/84