Back to Search Start Over

Probing the Dawn of Galaxies at z~9-12: New Constraints from HUDF12/XDF and CANDELS Data

Authors :
Oesch, P. A.
Bouwens, R. J.
Illingworth, G. D.
Labbe, I.
Franx, M.
van Dokkum, P. G.
Trenti, M.
Stiavelli, M.
Gonzalez, V.
Magee, D.
Publication Year :
2013

Abstract

We present a comprehensive analysis of z>8 galaxies based on ultra-deep WFC3/IR data. We constrain the evolution of the UV luminosity function (LF) and luminosity densities from z~11 to z~8 by exploiting all the WFC3/IR data over the Hubble Ultra-Deep Field from the HUDF09 and the new HUDF12 program, in addition to the HUDF09 parallel field data, as well as wider area WFC3/IR imaging over GOODS-South. Galaxies are selected based on the Lyman Break Technique in three samples centered around z~9, z~10 and z~11, with seven z~9 galaxy candidates, and one each at z~10 and z~11. We confirm a new z~10 candidate (with z=9.8+-0.6) that was not convincingly identified in our first z~10 sample. The deeper data over the HUDF confirms all our previous z>~7.5 candidates as genuine high-redshift candidates, and extends our samples to higher redshift and fainter limits (H_160~29.8 mag). We perform one of the first estimates of the z~9 UV LF and improve our previous constraints at z~10. Extrapolating the lower redshift UV LF evolution should have revealed 17 z~9 and 9 z~10 sources, i.e., a factor ~3x and 9x larger than observed. The inferred star-formation rate density (SFRD) in galaxies above 0.7 M_sun/yr decreases by 0.6+-0.2 dex from z~8 to z~9, in good agreement with previous estimates. The low number of sources found at z>8 is consistent with a very rapid build-up of galaxies across z~10 to z~8. From a combination of all current measurements, we find a best estimate of a factor 10x decrease in the SFRD from z~8 to z~10, following (1+z)^(-11.4+-3.1). Our measurements thus confirm our previous finding of an accelerated evolution beyond z~8, and signify a rapid build-up of galaxies with M_UV<-17.7 within only ~200 Myr from z~10 to z~8, in the heart of cosmic reionization.<br />Comment: 21 pages, 13 figures, 6 tables; submitted to ApJ

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1301.6162
Document Type :
Working Paper
Full Text :
https://doi.org/10.1088/0004-637X/773/1/75