Back to Search Start Over

Interferometry with Bose-Einstein Condensates in Microgravity

Authors :
Müntinga, H.
Ahlers, H.
Krutzik, M.
Wenzlawski, A.
Arnold, S.
Becker, D.
Bongs, K.
Dittus, H.
Duncker, H.
Gaaloul, N.
Gherasim, C.
Giese, E.
Grzeschik, C.
Hänsch, T. W.
Hellmig, O.
Herr, W.
Herrmann, S.
Kajari, E.
Kleinert, S.
Lämmerzahl, C.
Lewoczko-Adamczyk, W.
Malcolm, J.
Meyer, N.
Nolte, R.
Peters, A.
Popp, M.
Reichel, J.
Roura, A.
Rudolph, J.
Schiemangk, M.
Schneider, M.
Seidel, S. T.
Sengstock, K.
Tamma, V.
Valenzuela, T.
Vogel, A.
Walser, R.
Wendrich, T.
Windpassinger, P.
Zeller, W.
van Zoest, T.
Ertmer, W.
Schleich, W. P.
Rasel, E. M.
Publication Year :
2013

Abstract

Atom interferometers covering macroscopic domains of space-time are a spectacular manifestation of the wave nature of matter. Due to their unique coherence properties, Bose-Einstein condensates are ideal sources for an atom interferometer in extended free fall. In this paper we report on the realization of an asymmetric Mach-Zehnder interferometer operated with a Bose-Einstein condensate in microgravity. The resulting interference pattern is similar to the one in the far-field of a double-slit and shows a linear scaling with the time the wave packets expand. We employ delta-kick cooling in order to enhance the signal and extend our atom interferometer. Our experiments demonstrate the high potential of interferometers operated with quantum gases for probing the fundamental concepts of quantum mechanics and general relativity.<br />Comment: 8 pages, 3 figures; 8 pages of supporting material

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1301.5883
Document Type :
Working Paper
Full Text :
https://doi.org/10.1103/PhysRevLett.110.093602