Back to Search
Start Over
Uniqueness of equivariant compactifications of C^n by a Fano manifold of Picard number 1
- Publication Year :
- 2013
-
Abstract
- Let X be an $n$-dimensional Fano manifold of Picard number 1. We study how many different ways X can compactify the complex vector group C^n equivariantly. Hassett and Tschinkel showed that when X = P^n with n \geq 2, there are many distinct ways that X can be realized as equivariant compactifications of C^n. Our result says that projective space is an exception: among Fano manifolds of Picard number 1 with smooth VMRT, projective space is the only one compactifying C^n equivariantly in more than one ways. This answers questions raised by Hassett-Tschinkel and Arzhantsev-Sharoyko.
- Subjects :
- Mathematics - Algebraic Geometry
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1301.5486
- Document Type :
- Working Paper