Back to Search Start Over

An efficient multigrid calculation of the far field map for Helmholtz and Schr\'odinger equations

Authors :
Cools, Siegfried
Reps, Bram
Vanroose, Wim
Source :
SIAM Journal on Scientific Computing, 36:3(2014), p. 367-395
Publication Year :
2012

Abstract

In this paper we present a new highly efficient calculation method for the far field amplitude pattern that arises from scattering problems governed by the d-dimensional Helmholtz equation and, by extension, Schr\"odinger's equation. The new technique is based upon a reformulation of the classical real-valued Green's function integral for the far field amplitude to an equivalent integral over a complex domain. It is shown that the scattered wave, which is essential for the calculation of the far field integral, can be computed very efficiently along this complex contour (or manifold, in multiple dimensions). Using the iterative multigrid method as a solver for the discretized damped scattered wave system, the proposed approach results in a fast and scalable calculation method for the far field map. The complex contour method is successfully validated on Helmholtz and Schr\"odinger model problems in two and three spatial dimensions, and multigrid convergence results are provided to substantiate the wavenumber scalability and overall performance of the method.<br />Comment: SIAM Journal on Scientific Computing, 29 pages, 10 figures, 5 tables

Details

Database :
arXiv
Journal :
SIAM Journal on Scientific Computing, 36:3(2014), p. 367-395
Publication Type :
Report
Accession number :
edsarx.1211.4461
Document Type :
Working Paper
Full Text :
https://doi.org/10.1137/130921064